

(+)-N-FORMYLHARAPPAMINE AND (+)-N-FORMYLPAPILICINE, TWO NEW STEROIDAL ALKALOIDS FROM *BUXUS PAPILOSA*

M. IQBAL CHOUDHARY, ATTA-UR-RAHMAN* and MAURICE SHAMMA

Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA; *HEJ Research Institute of Chemistry, University of Karachi, Karachi 32, Pakistan

(Revised received 20 August 1987)

Key Word Index—*Buxus papilosa*, Buxaceae, steroid alkaloids; (+)-N-formylharappamine, (+)-N-formylpapilicine

Abstract—Two new steroid alkaloids from *Buxus papilosa* C.K. Schneider (Buxaceae) of Pakistani origin are (+)-N-formylharappamine (**1**) and (+)-N-formylpapilicine (**2**).

INTRODUCTION

Buxus papilosa C. K. Schneider (Buxaceae) is a shrub native to northern Pakistan. Our continuing studies on this plant [1-4] have now resulted in the isolation of two new alkaloids, namely (+)-N-formylharappamine (**1**) and (+)-N-formylpapilicine (**2**).

RESULTS AND DISCUSSION

The crude alkaloids were isolated from the air dried leaves of *B. papilosa* as described previously [3, 4]. The CHCl_3 extract, obtained by extraction at pH 8.5, was concentrated and subjected to column chromatography. Further purification by preparative TLC resulted in the isolation of compounds **1** and **2**.

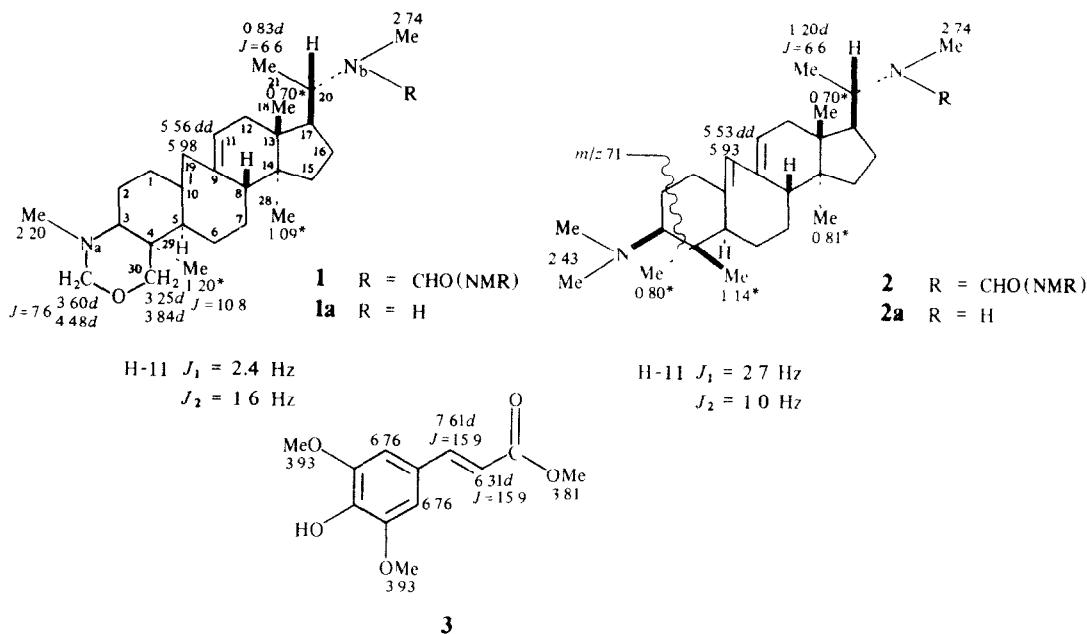
(+)-N-Formylharappamine (**1**), $\text{C}_{28}\text{H}_{44}\text{N}_2\text{O}_2$, showed UV maxima at 238 and 245 nm, with shoulders at 225 and 254 nm. This absorption pattern is characteristic of a 9(10 \rightarrow 19)-abeodiene system [2]. The IR spectrum featured strong absorptions at 1653 (amide) and 1624 ($\text{C}=\text{C}$) cm^{-1} .

The ^1H NMR spectrum (CDCl_3 , 360 MHz) of **1** bore a distinct similarity to that of (+)-harappamine (**1A**) [2], and included three singlets, at δ 0.70, 1.09 and 1.20. The secondary methyl groups absorbed as a doublet at δ 0.83. A three-proton singlet located at δ 2.20 was assignable to the N_a -methyl group. A set of AB doublets resonating at δ 3.25 and 3.84 represented the C-30 methylene protons, while another set of AB doublets centered at δ 3.60 and 4.48 indicated the protons of the methylene group bridging the nitrogen and oxygen atoms in the tetrahydrooxazine ring A singlet at δ 5.98 and a doublet of doublets centered at δ 5.56 were ascribed to H-19 and H-11, respectively. A singlet at δ 8.11, accompanied by a much smaller singlet at 7.98, represented the N_b -formyl proton. Similarly, the N_b -methyl group was indicated by a singlet at δ 2.74, followed by a smaller singlet at 2.80, due to geometrical isomerism.

The mass spectrum of (+)-N-formylharappamine (**1**) displayed molecular ion m/z 440. Base peak m/z 86 represented the N -formyldimethylinium cation,

$[\text{Me}-\text{CH}=\text{N}(\text{Me})\text{CHO}]^+$. Fragment m/z 127 arose through cleavage of ring A accompanied by proton transfer.

Our second alkaloid, (+)-N-formylpapilicine (**2**), $\text{C}_{28}\text{H}_{46}\text{N}_2\text{O}$, exhibited UV absorption maxima at 238 and 245 nm, with shoulders at 225 and 255 nm, again diagnostic of the 9(10 \rightarrow 19)-abeodiene system. The IR spectrum showed intense bands at 1658 (amide) and 1599 ($\text{C}=\text{C}$) cm^{-1} .


The ^1H NMR spectrum was closely related to that of the known (+)-papilicine (**2A**) [1]. It included four three-proton singlets at δ 0.70, 0.80, 0.81 and 1.14, indicating the number of tertiary methyl groups present. The secondary (C-21) methyl group resonated as a doublet at δ 1.20. A six-proton singlet at δ 2.43 was assigned to the $\text{N}(\text{Me})_2$ group attached to C-3. The C-11 olefinic proton appeared as a doublet of doublets at δ 5.53, while the C-19 olefinic proton absorbed as a singlet at δ 5.93. As with compound **1**, the formyl proton appeared as a singlet at δ 8.11 (and 7.99), and the N_b -methyl resonated at δ 2.74 (and 2.80).

The mass spectrum of (+)-N-formylpapilicine (**2**) showed molecular ion m/z 426. Peak m/z 383 resulted from loss of the methyliminium moiety from ring A. Fairly large ion m/z 86 represented the $[\text{Me}-\text{CH}=\text{N}(\text{Me})\text{CHO}]^+$ fragment. Finally, peak m/z 71 derived from cleavage of ring A as indicated in expression 2.

In addition to the aforementioned steroid bases, the plant yielded (+)-sinapic acid methyl ester (**3**), $\text{C}_{12}\text{H}_{14}\text{O}_5$. This compound incorporates the E configuration around the side chain double bond. ^1H NMR chemical shift assignments have been indicated around expression **3** [5-7].

EXPERIMENTAL

The leaves of *B. papilosa* were collected in northern Pakistan by the Forest Institute, Peshawar. The plant was identified by Professor S. Irtifaq Ali, Department of Botany, University of Karachi, and a specimen has been deposited in the Department of Botany, University of Karachi.

The EtOH extract of the air-dried leaves (50 kg) of *B. papillosa* was evaporated under vacuum to afford a gum. This was taken up in 10% HOAc. The aq. acidic extract was basified with NH₄OH and extracted with CHCl₃. The crude alkaloids (75 g) obtained upon evapn of the organic solvent were loaded on a silica gel column (3.2 kg). Elution was with CHCl₃-MeOH mixtures of increasing polarity. The fraction obtained using CHCl₃-MeOH (93:7) weighed 2.74 g. This fraction was placed on a silica gel column (130 g), and eluted with C₆H₁₄-CHCl₃-Et₂NH (14:5:1). The main fractions were subjected to repeated prep TLC on silica gel, using the system C₆H₁₄-Me₂CO-Et₂NH (8:1:1) to afford compounds 1-3.

+ 16 (ϵ 1 23, CHCl_3), UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ) 239, 327 (3.62, 3.57), IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} 1699, 1603, MS m/z (rel. int.) 238 (M^+ , 100), 223 (10), 175 (30), 28 (50)

Acknowledgements This research was supported by National Science Foundation grants INT-8217601 to M.S. and INT-8213225 to A.-ur-R.

REFERENCES

- 1 Atta-ur-Rahman, Nisa, M and Zamir, T (1984) *Z Naturforsch* **39b**, 127
- 2 Atta-ur-Rahman, Nisa, M and Farhi, S (1984) *Z Naturforsch* **39b**, 524
- 3 Choudhary, M I, Atta-ur-Rahman, Freyer, A J and Shamma, M (1987) *Tetrahedron* (in press)
- 4 Choudhary, M I, Atta-ur-Rahman, Freyer, A J and Shamma, M (1988) *J Nat Prod* (in press)
- 5 Spath, E, (1920) *Monatshchemie* **41**, 271
- 6 Kung, H P and Huang, W Y (1949) *J Am Chem Soc* **71**, 1836
- 7 Aldrich Library of NMR Spectra (1974) **6**, 141B